Keeping hope alive: Brain activity in vegetative state patients

Thirteen-year-old Jahi McMath went into Oakland Children’s Hospital on December 9 for a tonsillectomy. Three days later she was declared brain-dead; severe complications from the surgery resulted in cardiac arrest and her tragic demise. While neurologists and pediatricians at the hospital have declared Jahi brain-dead, her family refuses to accept the doctors’ diagnosis, fighting to keep her on life support.

This heartrending battle between hospital and family is sadly not a new one, and there is often little that can be done to compromise the two sides. However, neuroscientific research in recent years has made substantial developments in empirically determining if there are still signs of consciousness in vegetative state patients. These revelations can either bring hope to a desperate family or provide stronger footing for doctors trying to do the more difficult but often more humane thing.

In 2010, researchers at the University of Cambridge published a groundbreaking study in the New England Journal of Medicine that looked at brain activity in minimally conscious or vegetative state patients using fMRI. These patients were placed in the scanner and asked to imagine themselves in two different scenarios: in the first, they were instructed to envision themselves playing tennis and swinging a racket, which would activate a motor region of the brain called the supplementary motor cortex. In the second, they were told to think of a familiar place and mentally map or walk around the room. This mental map lights up the parahippocampal gyrus, an area of the brain involved in spatial organization and navigation.

Five of the patients (out of 54) were able to consistently respond to the researchers’ requests, reliably activating either the supplementary motor cortex or parahippocampal gyrus upon each instruction. Even more amazing, one of the patients was able to turn this brain activation into responses to yes or no questions. The patient was asked a series of autobiographical questions like “Do you have any siblings?” If the response to the question was yes, she was instructed to “play tennis,” while if the answer was no, she should take a mental stroll around the room. Remarkably, this individual was able to accurately respond to the researchers’ questions using just these two symbolic thought patterns.

Building on this research, a new study by the same scientists published in November of this year in NeuroImage used EEG to measure electrical activity in the brain in an attempt to better assess consciousness in the same group of vegetative state patients.

A certain type of EEG brain wave, the P300, is generated when we are paying attention; and just as there are different kinds of attention (i.e. concentration, alertness, surprise), there are different P300 responses associated with each type. An “early” P300 burst in activity in the parietal lobe (P3a) is externally triggered, such as when something surprising or unexpected grabs our attention. Conversely, delayed P300 waves in the frontal cortex (P3b) are more internally generated and are activated when we are deliberately paying attention to something.

To test this, the Cambridge researchers hooked up the same group of minimally conscious patients to an EEG machine and made them listen to a string of random words (gown, mop, pear, ox). Sprinkled throughout these distractor stimuli were also the words “yes” and “no,” and patients were instructed to only pay attention to the word “yes.” Typically, when someone performing this task hears the target word (yes), they experience a burst in delayed P300 activity, signifying that they were concentrating on that word. However, upon hearing the word “no,” participants often show early P300 activity, its association with the target word attracting their attention even though they were not explicitly listening for it.

Similar to the first study, four of the participants exhibited brain activity that indicated they were able to successfully distinguish the target from the distractor words. This result suggests that these patients are aware and able to process instructions. Three of the four individuals also demonstrated the appropriate activation during the tennis test listed above. However, it’s important to remember that in both of these studies only a very small minority of the patients were able to respond; the vast majority showed no evidence of consciousness during either task.

For the McMath family, studies such as these provide hope that their daughter is still somewhere inside herself, still able to interact with the outside world. But doctors fear this research may be misleading as these results are by far the exception. Additionally, there is no evidence that this type of activity will result in any change in the patient’s prognosis. Finally, and most relevant to the current controversy, complete brain death–as in the case of young Jahi–is very different from vegetative state or minimal consciousness; there is never any recovery from brain death. Advancements in neuroscience have grown more and more incredible in the last decade, and our knowledge of the brain has increased exponentially, but there is still more that we do not know than what we do, and we are a long way off from being able to bring back the dead.

Also posted on Scitable: Mind Read

Anxiety about certain things can be hereditary

It looks like we might be able to start putting the nature-nurture debate to bed. Epigenetics – the new hot-button research topic in both science and the media – is the ability of genes to be influenced by our experiences, altering our genetic make-up in real time. By changing the chemical signals that course through your brain and body, you can actually turn genes on or off, a process that can then influence your future actions. Thus, in some ways, epigenetics can be thought of as the bridge between nature and nurture—your behavior and environment affecting your biology, and vice versa.

I have an article in The Atlantic this week exploring epigenetics through a couple recent studies investigating inherited learning – where a parent’s experience alters their own genetic make-up, and this change is then passed on to their child. Admittedly, this all sounds a bit too much like Lamarckism, and scientists are quick to caution that the field is still in its infancy, so it’s hard to tell just how important this will be for our understanding of genes and behavior. But in the mean time, some of things we’re discovering about our parents’ unseen influence on us are pretty damn cool.

Check out the full Atlantic piece here.

Can synesthesia in autism lead to savantism?

I’ve got a new piece out on the Scientific American MIND blog network today on the fascinating link that’s been discovered between synesthesia – a “crossing of the senses” where one perceptual experience is tied to another, like experiencing sound and color together – and autism spectrum disorder.

Individuals with autism have significantly higher rates of synesthesia than the rest of the population, and the two are potentially linked by a unique way in which the brain is wired. White matter tracts that traverse our brains, connecting one area to another, are thought to be increased in both conditions. This results in an abnormal wiring of the brain that may lead in more close-range connections, but fewer long-distance ones. And it’s possible that these extra connections may also contribute to some of the extraordinary cognitive abilities seen in some autistic individuals with savant syndrome.

For more on the story, check out the full piece on here.